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1. INTRODUCTION 

The equation of state (EOS) of partially-ionized plasmas has long been of 
interest in stellar modeling. Stars having masses similar to or greater than the sun 
are weakly coupled and simple models give results that are adequate for many 
purposes. However, helioseismology is now able to measu.re the EOS of the sun, as a 
function of solar radius, to an accuracy better than 0.1% [l]* This level of accuracy can 
not be obtained from simple models and efforts to develop more rigorous theories are 
in progress. 

The Saha equation [Z] is the progenitor of methods to treat partially-ionized 
plasmas. It solves a set of coupled equations that balance ideal gas chemical 
potentials across chemical reactions occurring in the plasma. In its original form only 
the isolated particle ground state of each atomic/ionic component was considered. The 
next simplest approximation adds the classical Debye-Htickel Coulomb term corrected 
for electron degeneracy. In spite of its simplicity, this is a particularly good model 
because the deeply bound states are well represented by isolated (atomic) particles 
and the Debye-Hiickel correction contains most of the excited bound state contribution 
[3,4]. Helioseismology supports this theoretical result [5]. The EOS calculations 
should also include a correction for electron exchange, which is large enough to affect 
comparisons with. helioseismic data [C;]. In addition there are small quantum 
diffraction corrections to the Debye-Hfickel Coulomb term which are not typically 
included. 

For many years it was thought that the next improvement to the Saha 
equation should be to add excited bound states perturbed by the plasma environment. 
Since this problem is difficult to treat from fundamental theory, a voluminous 
literature based on ad hoc approaches was developed. The most commonly used 
methods to account for environmental effects assume either bound state energies from 
screened potentials or the confined atom model. This complicates the calculations and 
it is now known that EOS based on shifted bound state energies are in significantly 
worse agreement with helioseismology than those using unshifted bound states [7]. 

Neither EOS theory now commonly used to model stellar plasmas screens 
bound states. The MHD method [8,9] is a chemical picture approach where the free 
energy is assumed to be separable into translational, configurational, and. Coulomb 
interaction components. In the chemical picture it is necessary to assert the effect of 
the plasma on bound states, Based on the null results of Goldsmith, Griem, and 
Cohen [IO], MHD assumes that the bound state energies are unshifted. Instead, 
plasma effects enter through an occupation probability formalism that separates the 
Boltzmann sum into effective bound and continuum state parts. The resulting 
internal partition function is convergent. For neutrals the bou.nd state occupation 
probability is obtained from a model based on hard sphere interactions between 



atomic cores, while for ions the occupation probability is obtained from the dissolution 
of states due to electric microfield fluctuations. The MHD Coulomb interactions are 
given by the classical Debye-Htickel term corrected for electron degeneracy, which 
effectively limits MHD to weakly coupled plasmas. An ad hoc free energy term is 
added to guarantee pressure ionization. Electron exchange and diffraction corre&ions 
are neglected. The ACTEX method [3,4,11,12], is based on a physical picture 
approach that carries out a many body activity expansion of the grand canonical 
partition function (GCPF). A conceptual advantage of the physical picture is that it 
views the system in terms of its fundamental components; i.e., electrons and nuclei. A 
natural and important consequence of this approach is that low lying bound states are 
unscreened. ACTEX includes electron degeneracy and the leading quantum 
diffraction corrections as well as systematic corrections necessary for strongly-coupled 
regimes. 

Other EOS work aimed mostly at dense astrophysical objects has al.so recently 
appeared. In the chemical picture: Saumon, Chabrier, and Van Horn [13] generated 
EOS tables suitable for modeling low-mass stars and giant planets. An important 
feature of their work is the prediction of a plasma phase transition that may affect 
models of giant planets. Potekhin [14] has generalized the arguments of MHD so that 
the occupation probability of charged particles is obtained directly without invoking 
Stark ionization theory. His method does not require an ad hoc free energy term to 
produce pressure ionization. Stolzmann and Blocker [15] have given a treatment of 
fully ionized dense stellar matter. They include exchan.ge and charged particle 
interaction by Pa.dh approximates as well as relativistic effects. In the physical 
picture: Perrot and Dharma-wardana [16] have given a density-functional theory 
(DFT) method; Kraeft et al. [17] have developed a thermodynamic Green’s function 
method; Alustuey and Perez [l$] have developed a method based on Feynman-Kac 
path integrals ; Pierleoni et al. [19] have used the restricted path-integral Monte- 
Carlo method to study hydrogen; and Penman, Cl&ouin., and Zerah [20] have used 
density functional molecular dynamics to also study hydrogen. 

Due to the extreme accuracy required, it is currently not computational feasible 
to apply the simulation methods to helioseismology. Of the remaining methods the 
quantum diagrammatic physical picture approaches should give the best comparison 
with helioseismic data. So far however this has not been the case, primarily due to 
the difficulty of applying these methods in the region of partial ionization. One 
problem is that the diagrammatic methods involve a dynamic screened potential that 
significantly affects the bound states. The ACTEX approach follows a similar line but 
introduces some simplifications that allow it to treat the region of partial-ionization 
when the deBroglie wavelength, X, is less than the Debye length, ;lo. Consequently, 
at the corresponding point in the analysis, ACTEX approximates the dynamic 
screened potential with a static potential having screened energy levels. However, it 
can be shown that in the region of partial ionization many additional diagrams must 
be included to treat composite particles on the same basis as fundamental particles. 
ACTEX accomplishes this by introducing new activity variables that are built from 
products of the fundamental particle activities and the Boltzmann factors that control 
the ionization balance between states. The screening corrections to the isolated 
atomic states introduced through the screened potential are used to define the 
composite particle activities. Consequently, only isolated atomic energy levels appear 
in the renormalized expansion. This is where ACTEX goes beyond the more 
fundamental approaches. A brief description of the ACTEX methodology is given in 
Section 2. Comparisons to helioseismic and shock data are given in Section 3. 



2. THE ACTIVITY EXPANSION METHOD FOR PLASMAS (ACTEX) 

Quantum diagrammatic methods are quite complex and it is difficult to get 
beyond asymptotic limits. However, the main affect of quantum mechanics is to 
remove the short-ranged electron-ion divergence in the bound state sum. When 
X. < 1~ it is a good approximation to first develop the classical theory and then replace 
classical Boltzmann factors with their quantum mechanical analogues. This is the 
approach taken in ACTEX. At more extreme conditions quantum effects on the 
distribution of unbound particles become important. 

The classical activity expansion of the GCPF of strongly coupled, fully-ionized 
plasmas involves a many-body analysis of a very large number of both singly 
connected and multiply connected diagrams. In contrast, only the multiply connected 
diagrams contribute to a density expansion of the canonical partition function. Abe 
[Zl] showed how to carry out an all-orders expansion in the density. The leading 
terms in the resulting convergent multi-component expression for the non-ideal 
Helmholtz free energy are 

where the indices i, j, k etc. range over all components, 

is the ring diagram sum, 

is closely related to the second virial coefficient, Bij, of the static screened potential 

z.z .,2,-rlAD 
uij = 1 J 

9 (4) 
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the n’s number fractions , the Z’s are particle charges and, 

is the Debye length.. The Sijk, and higher order terms systematically replace the 
divergent Coulomb virial coefficients with the virial coefficients for the Debye-Hi.ickel 

potential (equation.(4)). The terms through order n2, given by equations. (2-5), show 
that there are some differences in detail. For example, there appears a term of order 
n3’2, i,e. the Debye-Htickel Coulomb interaction term, coming from the ring diagrams, 
while terms of order @ ij and (Bu~)~ are missing from the screened second virial 
coefficient. 

Equation (1) is a complete many-body solution for classical multi-component 
plasmas. Consequently, even though it is an expansion away from weak coupling, it 



recovers the Monte-Carlo strong coupling result [12]. It is well known that the grand 
canonical ensemble (GCE) is the appropriate choice for partially-ionized plasmas. It 
would be difficult to obtain a classical GCE result similar to the Abe result for the 
canonical ensemble. The corresponding quantum-mechanical expression, would be 
even more difficult to develop. The ACTEX method sidesteps both of these problems. 
The classical GCE result for fully ionized multi-component plasmas is obtained from a 
procedure that inverts equation (1) in terms of S(T,n{i)) to obtain an expression for 
P/kT as a functional of S(T, .zii)) The result for a two component plasma of electrons, e, 
and nuclei, a, of charge Z is 

where, the ellipsis indicates that cross terms not necessary for the present discussion 
have been left out and the 

Zi = (2Sj + 1)Ai3f2pi lkT, i = {f?, G} 

are the activities. 

(7) 

As it stands, equation (6) is not very useful , since it involves operations on 
the function S which is a sum over virial coefficients, whereas, a properly constructed 
activity expansion of the GCPF should involve cluster coefficients. However, it is a 
complete result that can be reorganized in terms of cluster coefficients of the screened 
potential. For a two component plasma of electrons, e, and heavy ions of type, a, the 
reorganized expression through terms of order z 5/2 is [12]: 

P 
-=ze+z,+~~R(~*)+z, 
kT 

i-z asR(u*) a (22, a az, az, e ee +22 z c e u! ea -I- z~c~xa) 

subject to the conditions, 

a P -- 
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In equation (8), 
s,(u*)= ’ 

124 (u*) 

is the ring diagram sum, similar to equation (2), 

44(u*) = 4x;;,* f---r- 
is the screening length in the GCE, and 

(9) 

(10) 

(11) 



7J”=z,+Z2z a (12) 

is defined for later convenience (the asterisk indicates that U* is not in final form), the 

cjj = hij -b&b; (13) 

will be referred to as Coulomb cluster coefficients, the bij are screened second cluster 
coefficients and i, j={e, a}. For two body terms bq = -Be. The ellipsis in equation (8) 

indicates that terms of order z 5’2 not needed in the present discussion are not 
included. 

The second deficiency of equation (8), i.e., the Coulomb short range divergence, 
can now be removed by replacing classical Boltzmann factors with their quantum 
analogs, For example, the screened classical second cluster coefficient for the e-a 
interaction is replaced by 

b ea = 4&,Tr FsH2 - FpHO , 
( 1 (14) 

where the trace is over the states of the potential 

-r/AA 
l-4 ea = -z(g e 

r ’ 
and ha = 

A2 
d WeakT 

is the thermal deBroglie wavelength. Beth and Uhlenbeck [22] have shown that 
equation (14) can be expressed in the convenient form 

be, = 4n”‘2[X;,~(21 +l)LpEnl + 
nl 

(1% 

where the En1 are bound states and the 61 are phase shifts. Only the phase shift term 
contributes to the e-e cluster coefficient, while the a - a second cluster coefficient can 
be calculated from the classical expression: 

h aa = 2nJre -SW&4 1 _ l]&. (16) 
0 

At low temperature the ground state Boltzmann factor in equation (15) 
completely dominates the sum, indicating that the equilibrium state is largely 
composed of hydrogenic bound pairs. It is easy to show that in this situation the 
product 2z,z,c;g, in equation (13) is the activity of hydrogenic pairs [12,23]. It follows 
that in partially-ionized plasmas every occurrence of the product ~z,z,c,~ should be 
decomposed into linear and quadratic parts, In general, all occurrences of terms 
involving electron-ion Coulomb cluster coefficients for M particles should be 
decomposed into N terms of order 1 to N in the activity. In the following we refer to 
the 1s hydrogenic activity as z*,, , dropping the superscript for simplicity, i.e., 



* 
zetx = Xw3/2X;a(21 -t l)e-~Els(U*)ze”a. (171 

In practice this is not the definition of zz, actually used. Compensation [12, 241 

between the bound and scattering state parts of equation (15) replace -,bEIS 
with ePEls - 1 i- pE1,, For simplicity this is ignored in the present discussion. 

The next step in the ACTEX procedu.re is to reorganize equation (8) to account 
for the formation of composite particles as the temperature is lowered. To introduce 
composite particles on an equal footing with fundamental particles, it is necessary to 
find terms such that z:, appears as a new variable similar to fundamental particles. 

To lowest order the reorganized expression for the pressure is P/ kT = ze + z, + zz, , 
where the new activity for hydrogenic ions becomes from the term 2z,z,c,,. At the 
ring sum level (equation (10)) things are already much more complicated. In order to 
introduce the screening of hydrogenic charges into the Debye length, i.e., replace 
U* with TJ* +(Z-1)2z;a it is necessary to find all the terms in the transformation 

sR(u*> -+ sR(u * +(z - l)2 Z;,, (1% 

To start this process note that (see equation (8)), ignoring the term involving accea /Jz~, 

“R(‘*) a(2zezacea) E2z z c 
Jze 

e a ea 
a~y~(u*) = z,*a &~(u*) 

(32, dz, ’ 
(19) 

which is 312 order in z*,, , “‘312 similar to equation (10). Collecting all terms of order zea 
in equation (8) gives 

SR (u*> + ZeM: * dsR(U*)+z* dsR(u*) =sR(uqI+~z2+1~ * a, 
dze 

ea 
dza zea &-J * (20) 

This is close to what is needed in 1st order to make the transformation (KS), except a 
cross term proportional to Z is absent. A term = Z would have to come from e-a 
interactions and in fact can be found in zz, . 

Consider a perturbation expansion of &(a~) / IT : 

En&) & a2 Ooe2 [3 2-Z(M)Jf... 
kT =?ii+K-x ’ 

(21) 

The linear shift is th.e same for all states and can be written in the suggestive form 

(22) 

Using this relation we can rewrite equation (21) in terms of the shifted Debye energy 
levels [25] according to 

(23) 



Limiting the discussion to just the ground state activity and using (23) in (17) gives 

Zza = 827 312 3 
s -2zdyR (II*) 

Aea(21 + l)e -PE1s e au* ZeZa * (24) 

equation, (24) can be used to define an activity for hydrogenic ions in terms of the 
shifted Debye energy levels according to 

&R 
* 

zea = e -2z3iF =ea, 

where, 

zra = 8r3’2%&(21 + 1)e --flEL ZeZa ) 

Next, expanding the exponential term involving& / GYJ gives 

(25) 
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The second term in equation (27) is just what is needed to give the factor (Z-1)2 in 
equation (20). Repeating the process for higher order terms in the expansion of sR(u> 
eventually gives the result 

s,(u*)+(z-li2z,~~+...=~~(~), (2% 

where 
U=ze+Z2Za+(Z-1)2Zea (29) 

Continuing in this way for higher order terms in the activity gives the transformation 

3 Ze,Za) -3 +Cze> za, zea ) , plus extra terms. However, these extra terms obey simple 

relations. For example, the sum of all terms of order zea have the important 
property: 

u2 a2 %aua-u-g+~-j-$G...~zea(u-u)~zea(o), (30) 

Higher order terms display similar properties. The introduction of an augmented set 
of activities to account for the shifting ionization balance as the temperature and 
density change, results in an expansion in terms of EE, i. e. E1”, -+ Epsl. The result is 
similar for excited states except near the plasma continuum [3]. 

The discussion so far has been limited to Boltzmann statistics and weak 
coupling. This has laid out the essential steps of the method and shows how the 
addition of diagrams in the region of partial-ionization, wh.ich are not included in 
more fundamental calculations [12], leads to an important result regarding hound 
states. The generalization of the ACTEX method to include the affect of electron 
degeneracy is accomplished using the method of Cooper and Dewitt [26] The effect of 
exchange is also added. Quantum diffraction corrections for low order terms are 
obtained from Dewitt [27]. A method for adding strong ion coupling is given in [12], 



3. COMPARISON WITH SEISMIC AND EXPERIMENTAL DATA 

Until recently it was not possible to validate theories of the EOS of partially-ionized 
plasmas by other means. That situation has changed dramatically. Now there are not 
only large projects aimed at observing the seismology of the sun to obtain very 
accurate EOS data, but also laser techniques that measure the shock Hugoniot. 
There have been a number of interesting comparisons between these observational 
and experimental projects that can be mentioned only briefly (see the papers by 
Dappen, &ess et al., and Militzer et al, elsewhere this Volume). 

A number of comparisons of the MHD and ACTEX equations of state have been 
made to helioseismic inversions [28-301. In general both equations of state are in good 
agreement with the data, but these studies have found that the ACTEX EOS yields 
better consistency. Basu and Christensen-Dalsgaard [31] have recently used the 
newly available LOW L data [32] to compare the difference in I, = (JlnPl amp), 
between the sun and theories. In this case neither of the calculations stands out as a 
significantly better match with the data, although ACTEX matches slightly better 
overall. Analysis of higher-degree data will improve the quality of the inversions near 
the surface, where the greatest theoretical discrepancies occur. Models using the 
ACTEX EOS reduced calculated globular cluster ages by about a billion years, in 
better agreement with cosmology [33] 

Gas gun [34] and laser shock measurements [35] of the deuterium Hugoniot 
present a challenge to theory. Starting from a liquid state with a densitypa=O.171 
g/cc these experiments have reached pressures up to 2.1 Mbar (see Fig.(l)), The 
Hugoniot data displays a large maximum in the compression, a value of six at a 
pressure of 1.5 Mbar, although for most materials the maximum compression along 
the Hugoniot generally does not exceed 4.5. The unusually large maximum 
compression ratio in deuterium is due to the large internal energy of the diatomic 
initial state. The shock temperature was not measured, but calculations give a value 
around 3.5eV at 2 Mbar. Under these conditions deuterium is mostly dissociated and 
about 15% ionized. There are large discrepancies between the theories and between 
the theories and experiment. Tight-binding MD calculations [36] give only a slight 
maximum nearp/po=4, while quantum MC calculations [9] give a maximum 
compression ratio around 5 at pressure of 0.7 Mbar. That there are such large 
discrepancies between the simulations as well as between the simulations and 
experiment is a puzzle. The SESAME model [37] gi.ves results similar to MD. The 
Thomas-Fermi-based QEOS model [38] gives a bump at about the same pressure as 
experiment, but at substantially lower density. Linear mixing model [39] calculations 
agree well with the experimental data, except at the highest pressures. The ACTEX 
calculations are in good agreement with the highest pressure data, but they do not 
include molecules and so do not extend to the low pressure regime. 

Comparisons of ACTEX with high density gas gun and nuclear shock data for 
Be, Al, CH, H20, and Si02 were recently used to validate [40] the method for I up to 
9. 

4. DISCUSSION 

There are plans to improve the range and the quality of EOS data obtained 
from helio- and astro-seismic observations as well as laser shock experiments. This 
will present an increasing challenge to ongoing efforts to model the seismic data from 
physical picture approaches. The existing discrepancies between MD and MC 
calculations and experiment are already causing considerable effort to understand the 



reasons and. should l.ead to improvements in these basic approaches. In the next 
years it can be expected that these new experimental and theoretical efforts 
expand our understanding of partially-ionized regime. 

few 
will 

Fig.1 Comparison of theory and experiment for the deuterium Hugoniot. 
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